
Automated Negotiation for Package Delivery

Dave de Jonge and Carles Sierra
Artificial Intelligence Research Institute, IIIA-CSIC
Campus de la Universitat Autònoma de Barcelona

08193, Bellaterra, Catalonia, Spain
{davedejonge, sierra}@iiia.csic.es

Abstract—Package delivery companies compete
with each other and have costumers spread over
wide areas. We propose a negotiation algorithm that
allows companies and individual postmen to negotiate
over who delivers what package. This way, package
delivery can be made more efficient, yielding a higher
profit and/or lower costs for all parties. Our system
does not force competing companies to co-operate,
but proposes solutions that allow all parties to in-
crease their individual profit.

I. Introduction
Package delivery companies often operate in wide

areas (such as entire countries or continents) that overlap
with the areas of competing companies. Although this
is convenient for customers that want to send packages
over large distances, it is inefficient, since deliverers
(postmen) may need to traverse unnecessary long dis-
tances. Efficiency would be improved if each postman
could deliver all its packages in a small area.

Therefore, we propose an automated solution, that
enables postmen to negotiate, in an automated way, with
many other postmen at the same time over which pack-
age to deliver, in real time. This means that postmen
can decide to exchange packages even when they are
already on their way to deliver them. Our solution is
decentralized and therefore scalable.

A possible alternative to automated negotiation would
be to apply a Distributed Constraint Optimization Prob-
lem (DCOP) solver to find solutions that distribute the
packages in a fair way. The problem with this however, is
that fair solutions are not always feasible, since package
delivery is a discrete domain so there might not be any
solution that gives the same amount of profit to every
party. Moreover, different companies might have differ-
ent opinions about what can be considered ‘fair’. This
would make the package delivery companies distrust the
system and could lead to conflicts.

Therefore, our proposed algorithm does not try to
find a solution that is fair to everyone, but negotiates
on behalf of one company (or one single postman), in
order to maximize that company’s profit. All the other
companies are considered as opponents, and each one of
them is responsible for accepting or rejecting possible

solutions, depending on what they themselves consider
profitable.

Our algorithm applies a Branch & Bound search
through the space of all solutions, and estimates for
every explored solution the utility gain of that solution
to each negotiator. It then proposes some of the solutions
it found according to a concession strategy.

Although automated negotiations have been studied
extensively in the literature [1], [2], [3], [4], [5], most
of these studies make unrealistic assumptions so they
are not directly applicable to real-world problems. In
particular, they cannot handle the following properties,
which our algorithm does take into account:
• The utility functions are non-linear, hard to calcu-

late and hard to invert.
• Solutions may involve many agents, including hu-

mans.
• The number of solutions is very large, so one cannot

exhaustively explore the space of all solutions.
• The environment changes during the negotiations

due to actions of others.
• Other agents in the system are unknown and cannot

be blindly trusted.
• Decisions have to be made within limited time.

All of these features are indeed present in the package-
delivery problem: the utility of delivering a package is
a complex function of time and distance, and depends
on the other packages to be delivered. The number of
agents to negotiate with is large, as there can be many
postmen working at the same time. The number of
possible solutions is very large, as there are many ways
to divide packages among postmen. The environment
changes continuously, as new packages appear during the
day and the postmen are moving around. The agents to
negotiate with usually work for competing companies,
thus we cannot blindly trust them. And finally, decisions
should made quickly, as packages need to be delivered
in time.

In the next section we present a simplified version of
the package delivery problem. In Section III we explain
our algorithm to solve the problem, in Section IV we
show the results of our experiments, in Section V we
explain how the problem can be adapted for more re-

alistic environments, and finally in VI we present our
conclusions.

II. Negotiating Salesmen Problem

In order to do experiments with negotiation for pack-
age delivery we have defined a simplified problem which
is an abstracted version of real-world package delivery.
In section V we show how the problem can be adapted
to represent the real world more realistically. The ad-
vantage of our simplified problem is that it allowed us
to do experiments quickly to test our algorithm.

The problem we define here is a variant of the Travel-
ing Salesman Problem (TSP) that we call the Negotiat-
ing Salesmen Problem (NSP). It resembles the multiple
Traveling Salesmen Problem (mTSP) as described in [6],
but with the difference that each agent in the NSP is only
interested in minimizing its own path.

The idea is that several agents (the salesmen, or
postmen) need to visit a set of cities. The salesmen
all start in the same city1, and all other cities should
be visited by at least one agent. Initially, each city is
assigned to one salesman that has to visit it. However,
the salesmen are allowed to exchange some of their cities
amongst each other, so that the agents can decrease the
distances they have to travel. For example: if a city v
is assigned to agent α, but α prefers to visit another
city v′ that is assigned to agent β, then α will propose
β to exchange v for v′. If β however doesn’t want v he
will not accept this deal. And if no other agent wants
to accept v either, then α is obliged to travel along city
v. However, we impose the restriction that not all cities
can be exchanged. This is because a postman might have
some obligations that he cannot, or does not want to,
transfer to anyone else. The cities that can be exchanged
are called the interchangeable cities, while the cities that
cannot be exchanged are the fixed cities.
The proposed exchanges of cities do not have to be

bilateral, but may involve any number of salesmen.
In the following, all sets we mention are finite.
Definition 1: An instance of the NSP is a tuple

〈G, v0, A, F, I, ε0, tdead〉, which consists of: a weighted
graph G, a marked vertex v0 of the graph, a set of agents
A, a set of fixed cities F , a set of interchangeable cities
I, an initial distribution of cities ε0 and a deadline tdead.
These components are further explained below.
G is a complete, weighted, undirected graph: G = 〈V,w〉
with V the set of vertices (the cities) and w the weight-
function that assigns a cost to each edge: w : V ×V → N

1This assumption was made to stay close to the original mTSP,
but should be dropped in realistic domains. See also Section V.

such that it satisfies the triangle inequality2:

∀a, b, c ∈ V : w(a, c) ≤ w(a, b) + w(b, c)

One of the vertices is marked as the home city: v0 ∈ V .
Each agent has to start and end its trajectory in this city.
We use the symbol V to denote the set of destinations,
that is: all cities except the home city: V = V \ {v0}.
The set of destinations is partitioned into two disjoint
subsets: F and I, so: V = F ∪ I and F ∩ I = ∅. They
are referred to as the set of fixed cities and the set of
interchangeable cities respectively.

The set of agents is denoted3 by A = {α, β, ...}.
Each destination is initially assigned to an agent, by the
function ε0 : V → A. We use the symbol V i to denote
the subset of V consisting of all cities that are assigned
by ε0 to agent i. V i = {v ∈ V | ε0(v) = i}. V i is referred
to as agent i’s set of preassigned cities. The definitions
above imply that for each agent its set of preassigned
cities can be further subdivided into: V i = Fi∪ Ii where
Fi is V i ∩ F and Ii is V i ∩ I.

Finally, the instance includes a real number tdead that
represents the deadline for the negotiations. Agents are
allowed to negotiate over the assignment of cities, until
this deadline has passed.
Definition 2: A solution of an instance of NSP is a

tuple 〈εs, T 〉 in which εs is a distribution of cities: εs :
V → A such that the restrictions of ε0 and εs to F are
equal: ∀v ∈ F : ε0(v) = εs(v). T = (Tα, Tβ , ...) is a tuple
of finite sequences of cities, one for each agent, such that
for each agent i, Ti contains v0 and all cities in V ′i, with
V
′
i = {v ∈ V |εs(v) = i}.

This means that in the solution, the cities are distributed
between the agents according to εs, but the fixed cities
F are still assigned to their original owners. So in the
solution, the cities are redistributed: V = V

′
α ∪ V

′
β ∪ ...,

but the fixed cities are not: V ′i ∩ Fi = Fi. A sequence
Ti of the solution represents a cycle in the graph that
starts and ends in v0 and that passes all vertices in V ′i.
For each agent we then have a cost: c(Ti) ∈ N. If Ti is
given by Ti = (v0, v1, v2, ...vk), then c(Ti) is defined as:

c(Ti) = w(vk, v0) +
k∑
j=1

w(vj−1, vj) (1)

By definition, an agent i prefers a cycle T 1
i over a cycle

T 2
i if and only if c(T 1

i) < c(T 2
i). We assume all agents

2The assumptions of completeness and triangle inequality are
made to simplify the problem. A problem instance without these
properties can be converted into an equivalent instance that does
satisfy them, so these assumptions are made without loss of gen-
erality.

3We use Greek letters as the names of specific agents, while we
use Latin letters as variables that can refer to any undetermined
agent. The letter ε however does not represent an agent, because
it is reserved for assignments of cities.

are rational and therefore a solution is only feasible if for
each agent the cost of the solution is less then the cost
it would incur from the original distribution of cities ε0.

III. NB3: Negotiation Based Branch and Bound

Branch & bound (BB) is a general algorithm to find
optimal solutions in discrete domains [7]. The objective
of a BB algorithm is to find a solution x ∈ S to a problem
that minimizes a given cost function f : S → R. The
algorithm incrementally generates a tree where nodes
represent sets of solutions in S. The algorithm splits the
set of solutions represented by a node into a number of
subsets (S1, . . . , Si, . . . , Sk) that become the children of
the node. For each node an upper bound and a lower
bound for the values of f on the elements of Si is
calculated. When the lower bound of a node is higher
than the upper bound of another node, then the former
node can be ignored (pruned) as it will not contain the
optimal solution.

In our problem however, there is not one single cost
function, but a set of cost functions, one for each
salesman in the NSP. Each agent is only interested in
minimizing its own cost function and needs to negotiate
with the other agents in order to achieve this. We
propose an algorithm that is run by such an agent and
that applies BB to explore the search space.

A. Actions and Plans

We assume a number of agents A = {α, β, . . . , } an
initial world state ε0 ∈ E , and a set of actions O that
these agents might execute. Each agent i ∈ A can choose
its actions only from a certain subset Oi of O. Therefore
we have O =

⋃
i∈AOi. We will use the notation Oi to

refer to the set of actions that all agents different from
i might perform Oi = O \ Oi.
In the NSP, a world state is an assignment of in-

terchangeable cities to agents: ε : I → A. An action
ac ∈ O is a triple (i, v, j) with i, j ∈ A, i 6= j and v ∈ I,
representing an agent i giving a city v to another agent
j. The set of actions Oj that agent j can execute consists
of the actions in which a city is given to j

Oj = {(i, v, j) ∈ A× I × {j}|i 6= j}

Note that such an action increases the cost of j and so
it is up to j to decide whether or not it agrees with this.
Therefore, we consider it as being executed by j rather
than by i.
The execution of an action on a world state results in

a new world state: ac(ε) = ε′. A set of actions, that is,
a joint plan, p ⊆ O acts on a world state ε by letting all
the actions ac ∈ p act on ε (note that in the NSP the
order of execution of the actions is irrelevant).

In the NSP, the execution of an action ac = (i, v, j)
means that the city v is re-assigned to agent j:

ε′(v) = j and ∀u ∈ V \ {v} : ε′(u) = ε(u).

Each agent i aims to minimize its own cost func-
tion fi(ε), which means they have conflicting interests.
Agents therefore need to negotiate to find compromises.
In the NSP fi(ε) is the length of the shortest path
through all cities assigned to i under assignment ε.

Not every plan is feasible. In the NSP, a plan is only
feasible if a city is not given away twice, and cities are
only given away by their respective owners. The set of all
feasible plans in world state ε is denoted as fea, with: p ∈
fea(ε) ⇔ ∀(i, v, j) ∈ p : ε(v) = i ∧ ∀(i, v, j), (i′, v′, j′) ∈
p : v 6= v′. We next explain the different components of
NB3 from the perspective of agent α. The other agents
might also run a copy of NB3, or any other negotiation
algorithm, or they might even be human.

B. The Search Tree
An agent that runs the NB3 algorithm builds a search

tree that is explored according to a best-first strategy.
Each arc between a node and its parent is labeled
by a certain action. Every node n then represents a
partial plan path(n) that consists of all the actions along
the path from the root to n. Equivalently, every node
represents the set of all world states Sn that can be
realized when the actions in path(n) are executed.

For each node generated, the agent determines
whether the corresponding partial plan is good enough
to be proposed, taking the cost for himself into account,
as well as the costs for the other participating agents.
While waiting for the acceptance of issued proposals,
NB3 keeps on expanding the tree in search for alternative
plans in case the proposed plan is not accepted. The
question of whether a plan is considered ‘good enough’
depends on a time-dependent concession strategy. The
closer we are to the deadline, the more the agent is
willing to concede.

Note that applying BB makes the algorithm especially
useful in non-linear domains, because for each plan that
it explores it calculates the cost of that specific plan,
rather than simply calculating the cost for each action
individually and then summing them, as one could do in
a linear domain.

C. Bounding
When applying BB to negotiations, it is required that

each node n maintains bounds for the cost functions fi
of every agent. NB3 therefore always needs to have a
model4 of these cost functions, and uses it to calculate

4For the NSP it is easy to make such a model because the cost
of an agent is simply its path length. For more realistic scenarios,
see Section V

for every agent i ∈ A the following quantities (we assume
the current state of the world is ε0 and we define ε1 =
(path(n))(ε0)):

A global upper bound: gubi. The value of the best
environment agent i can guarantee himself without co-
operation from any other agent, given the current state
of the world.

gubi = min
p1⊂Oi

max
p2⊂Oi

{fi((p1∪p2)(ε0)) | p1∪p2 ∈ fea(ε0)}

For each node n an intermediate value: ei(n). The
cost agent i incurs if exactly the actions in the plan
path(n) are executed and no other actions.

ei(n) = fi(εn)

For each node n a lower bound: lbi(n). The minimum
cost that i will incur given that the plan path(n) is
executed.

lbi(n) = min
p1⊂Oi

min
p2⊂Oi

{fi(p1∪p2(εn)) | p1∪p2 ∈ fea(εn)}

These values cannot always be calculated exactly,
because α might not have complete knowledge of the
current world state or of the other agents’ cost functions
fi and because the time restrictions might make it
impossible for α to compute these quantities exactly.
Therefore, α can only approximate them.

The global upper bound acts as the ‘reservation value’:
an agent would never accept any deal that yields a cost
higher than its global upper bound. The intermediate
value of a node is the value that the agent would get if
the actions in the path from this node to the root node
are executed. So if ei(n) > gubi the plan corresponding
to node n is not profitable for agent i.

D. Searching and Pruning
When a plan p proposed by α is accepted by β, agent β

commits itself to execute his part of the plan, that is: the
actions pβ = p ∩ Oβ . All actions that are incompatible
with those in pβ then become unfeasible, so α can prune
every node that has any of these actions in its path to
the root.

Since NB3 performs a best-first search, it uses an
expansion heuristic h to rank the nodes: h(n) ∈ R≥0.
In each cycle of the algorithm the node with the highest
expansion heuristic is chosen to split.

We do not have the space here to give a full description
of the calculation of the expansion heuristic, but the
main idea is that we estimate the likelihood that a
node will generate a child node representing a plan that
would be accepted by the other agents. We calculate the
likelihood that agent β will accept a plan by assuming
it is 0 when the cost for β is higher than gubβ , and 1
when the cost is less than the highest cost β has already
offered to pay. Furthermore, we assume this likelihood

increases linearly when the cost is in between these two
values.

The lower bound lbi(n) is the lowest cost agent i could
possibly achieve in any descendant of node n. This means
that if lbi(n) > gubi, any plan that extends path(n) will
be unprofitable for i. Therefore, it is useless to further
expand n so the expansion heuristic h(n) for such a node
should be zero.

For more details on this we refer to [8].
We like to stress here the importance of the fact that

the offers made by the other agents influence the expan-
sion heuristic. If β concedes, it becomes more attractive
for α to explore plans in which β is involved. This means
that search and negotiation are intimately intertwined
with each other; search influences negotiation and vice
versa. This is a key point of NB3 and forms a major
difference with other existing negotiation algorithms.

IV. Experimental Results
We here present some results we have obtained by

applying NB3 to the NSP. Ideally, we should test our al-
gorithm against other negotiation algorithms. However,
as far as we know there are no algorithms developed
that can handle the kind of domain we are considering.
Therefore, in Section IV-C we test NB3 by letting some
agents running NB3 negotiate with agents running a
random search. Also, in order to see how the algorithm
scales with increasing problem size, we have done some
experiments in which all agents were running NB3.

A. Evaluating Results
The NSP instances used for our experiments were

created by choosing random points in a 2-dimensional
Euclidean plane. Each such point represents a city and
for each pair of cities the distance between them is given
by their Euclidean distance. The cities were randomly
divided among the agents. In all experiments each agent
was assigned one fixed city.

For each run we stored for each agent the set of cities
it initially owned, and the set of cities it owned when
the deadline for negotiations had passed. The shortest
paths through these sets of cities were then calculated by
the Concorde TSP Solver [9]. The length of the shortest
path through the initial set of cities owned by agent i
is denoted as Cini , while the length of the shortest path
through the final set of cities owned by agent i is denoted
as Cfin

i . Our performance measure is then defined as the
percentual cost reduction averaged over all agents:

Q = 100
|A|

∑
i∈A

Cini − C
fin
i

Cini
(2)

All results in this section were averaged over 25 runs,
each with a different instance of the NSP.

The experiments were conducted on a computer with
a Pentium 4, 3GHz CPU. The agents were implemented
as Jade agents [10].

B. Varying the Complexity
To see how the algorithm scales with the complexity of

the problem, we have performed six tests with different
numbers of agents and 10 interchangeable cities per
agent. Also we did six tests with 10 agents each but with
different numbers of interchangeable cities assigned to
the agents. The results are presented in Figure 1. From

Figure 1. Cost reduction as a function of the number of agents
and of the number of cities.

the graph on the left we see that the results do not get
any worse as the number of agents increases. Apparently
the increased complexity of the problem is compensated
by the increased computing power resulting from the
larger number of agents and the fact that an agent
can profit from the plans discovered by other agents.
From the graph on the right, we see that when the
number of cities increases the results become worse,
but the decrease is relatively small. This suggests that
the expansion heuristic successfully manages to limit the
number of redundant nodes that are explored, as it is
supposed to do.

C. Comparison with Random Search
We now compare NB3 against random search. That

is: we let some agents running NB3 (the “smart agents”)
negotiate with a number of agents (the “dumb agents”)
running an algorithm equivalent to NB3, except that
the expansion heuristic for each node was replaced by
a random number.

We did four tests. Each test involved 10 agents, but
for each test the number of dumb agents among those
10 was different. The results are presented in Figure 2.
The graph on the left shows the average scores of the
dumb agents and the one on the right shows the average
scores of the smart agents. As expected the average
result over all agents becomes worse as the number of
dumb agents increases. Also, we conclude that the smart
agents perform significantly better than the dumb agents.
Since the smart agents are able to find better plans they
have more bargaining power, and are thus able to exploit
the dumb agents.

Figure 2. Cost reduction of dumb agents and smart agents as a
function of the number of dumb agents.

V. Realistic Package Delivery Problems

The NSP is a highly simplified version of real package
delivery. In order to apply NB3 to real-world package
delivery, we need to take a lot more factors into account.
Some of these however can be easily incorporated into
the NSP without changing the original problem much.

A. Utility
In the real world the cost of a postman is not simply

given by the length of its trajectory, but rather by
the financial cost of traversing its trajectory, which
depends on the amount of gas used and the presence of
toll booths. Taking this into account however does not
change the essence of the NSP, since we could simply
re-interpret the weights of the edges of the graph as the
financial cost associated of traversing them. Of course,
the true cost might not only be the financial cost, but
could also include time, so we could define weights of the
graph as a linear combination of time and money.

Furthermore, the postman may not receive the same
amount of money for each package it delivers. Again,
this is not a problem, since one could simply assign the
value of a package to its destination vertex. This value
is then subtracted from the cost of a path that passes
this vertex.

B. Locations
To interpret the NSP as a real world problem, we

should interpret the cities as generic locations, rather
than real cities. In reality one can identify an infinite
number of locations, but this can be overcome by only
considering the destinations of packages that are cur-
rently in process to be delivered, the current locations
of the postmen, and the locations of the post offices. This
set of locations is dynamic, as clients might request the
delivery of new packages at any moment.

Also, to apply our system to the real world we should
drop the assumption that all agents start in the same
home city, as real postman are spread out across their
area of operation. The initial location of each postman
is then simply its current location at the time of nego-
tiations. Since the algorithm is running continuously, it
should regularly update the positions of the postmen.

C. Constraints
Furthermore, one has to take into account that post-

men are subject to certain constraints. For example,
there is a maximum on the number of packages it can
carry at the same time, depending on their weights and
sizes. Moreover, postmen are constrained in the amount
of time they can (or want to) work.

D. Non-linearity
Although the NSP is already a non-linear problem,

since the length of a trajectory is a non-linear function
of the co-ordinates of the visited cities, we encounter yet
another form of non-linearity when we are dealing with
real-world problems. This is because, given the weight
of a certain trajectory, the true utility of this trajectory
might be a non-linear function of this weight.

For example: a postman might be willing to work 8
hours a day for 80 Euro, but not be willing to work 12
hours a day for 120 Euro, because the 4 extra hours
are much more tiresome then the first 8 hours were, so
the postman demands a higher salary per hour for these
extra hours. Utility is then a non-linear function of time
and money.

Although this cannot be incorporated easily into the
NSP, it is still not a problem for NB3, as long as we have
some means of aggregating the time-cost, the financial-
cost and the constraints into a single utility value.

E. Utility Learning
Finally, we should take into account that a postman

has emotions that determine how much it values time
and money. This makes it almost impossible to find
an exact utility function that expresses the postman’s
preferences. We are therefore planning to develop a
system in which the user can express its preferences, in a
discrete and qualitative way, from which the system can
approximate a utility value. A postman could pre-define
some of its preferences, but could also refine its prefer-
ence representation during the negotiations. The system
can suggest several solutions to the user, who may then
react by indicating which of them it prefers. The system
can use this information to dynamically learn and adapt
a representation of the user’s preferences. Since this
happens in real time, the learned preference profile might
even reflect the current emotional state of the user.

VI. Conclusions

We have introduced an algorithm called NB3 to im-
prove the efficiency of package delivery. It enables pack-
age delivery companies to negotiate over who delivers
which package, but without neglecting the fact that
companies are competitors and are therefore only willing
to co-operate if it yields them an increase of profit.

We have introduced a test case problem called NSP
to test our algorithm and we have performed some
experiments with this problem. From their results we
conclude that our algorithm decreases the costs of the
postmen and scales well with increasing problem size.

Finally, we have explained how the NSP and NB3

should be adapted in order to make them suitable for
real-world package delivery.

VII. Acknowledgments
Supported by CHIST-ERA project ACE and the

Spanish Ministry of Education and Science TIN2010-
16306 project CBIT.

References
[1] N. Jennings, P. Faratin, A. Lomuscio, S. Parsons,

C. Sierra, and M. Wooldridge, “Automated negotiation:
Prospects, methods and challenges,” International Jour-
nal of Group Decision and Negotiation, vol. 10, no. 2, pp.
199–215, 2001.

[2] G. Lai, K. Sycara, and C. Li, “A decentralized
model for automated multi-attribute negotiations with
incomplete information and general utility functions,”
Multiagent Grid Syst., vol. 4, pp. 45–65, January 2008.
[Online]. Available: http://dl.acm.org/citation.cfm?id=
1378675.1378677

[3] P. Faratin, C. Sierra, and N. R. Jennings, “Using simi-
larity criteria to make negotiation trade-offs,” 2000, pp.
119–126.

[4] ——, “Negotiation decision functions for autonomous
agents,” Robotics and Autonomous Systems, vol. 24, no.
3-4, pp. 159 – 182, 1998, multi-Agent Rationality.
[Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0921889098000293

[5] T. Baarslag, K. Hindriks, C. M. Jonker, S. Kraus, and
R. Lin, “The first automated negotiating agents com-
petition (ANAC 2010),” in New Trends in Agent-based
Complex Automated Negotiations, Series of Studies in
Computational Intelligence, T. Ito, M. Zhang, V. Robu,
S. Fatima, and T. Matsuo, Eds. Springer-Verlag, 2010.

[6] T. Bektas, “The multiple traveling salesman problem:
an overview of formulations and solution procedures,”
Omega, vol. 34, no. 3, pp. 209–219, June 2006.

[7] E. L. Lawler and D. E. Wood, “Branch-and-bound meth-
ods: A survey,” Operations Research, vol. 14, no. 4, pp.
699–719, 1966.

[8] D. de Jonge and C. Sierra, “Branch and bound
for negotiations in large agreement spaces,” IIIA-
CSIC, Bellaterra (Barcelona), Spain, Tech. Rep., 2012.
[Online]. Available: http://www.iiia.csic.es/files/mon_
library/TR-IIIA-2012-01.pdf

[9] D. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook,
“http://www.tsp.gatech.edu/concorde,” 2012.

[10] Jade, “Java agent development framework,
http://jade.tilab.com,” 2012.

http://dl.acm.org/citation.cfm?id=1378675.1378677
http://dl.acm.org/citation.cfm?id=1378675.1378677
http://www.sciencedirect.com/science/article/pii/S0921889098000293
http://www.sciencedirect.com/science/article/pii/S0921889098000293
http://www.iiia.csic.es/files/mon_library/TR-IIIA-2012-01.pdf
http://www.iiia.csic.es/files/mon_library/TR-IIIA-2012-01.pdf

	Introduction
	Negotiating Salesmen Problem
	NB3: Negotiation Based Branch and Bound
	Actions and Plans
	The Search Tree
	Bounding
	Searching and Pruning

	Experimental Results
	Evaluating Results
	Varying the Complexity
	Comparison with Random Search

	Realistic Package Delivery Problems
	Utility
	Locations
	Constraints
	Non-linearity
	Utility Learning

	Conclusions
	Acknowledgments
	References

